Способы расчета мощности системы отопления (+пример)

Для отопления городских многоквартирных домов основными источниками тепла служат тепловые электроцентрали ТЭЦ, гидроэлектростанции ГЭС, котельные, нагретый теплоноситель (вода) от которых поступает в квартиры по трубопроводу централизованной магистрали. При этом поддержание в помещениях нормированной температуры с одновременным эффективным использованием топлива и снижением теплопотерь происходит, если соблюдается температурный график подачи теплоносителя в систему отопления.

Зачем нужен расчет тепловых нагрузок

Расчёт тепловой энергии на отопление необходим для правильного определения характеристик системы с учетом индивидуальных особенностей объекта: тип и назначение здания, количество проживающих людей, материал и конфигурация каждого помещения, географическое положение и многие другие. Вычисление размера тепловой нагрузки является отправной точкой для дальнейших расчетов параметров оборудования отопления:

  • Подбор мощности котла. Это самый важный фактор, определяющий эффективность системы отопления в целом. Производительность котла должна обеспечивать бесперебойную работу всех потребителей в любых условиях, в том числе и при наиболее низких температурах (в самую холодную пятидневку). Вместе с тем при избыточной мощности котла часть вырабатываемой энергии, а следовательно, и денег хозяев будет в буквальном смысле вылетать в трубу;
  • Согласование подключения к газовой сети. Для того чтобы получить разрешение на присоединение к газотранспортной магистрали, необходимо разработать ТУ на подключение. В заявке обязательно указывается планируемый годовой расход газа и оценка суммарной тепловой мощности всех потребителей;
  • Расчет периферийного оборудования. Тип и характеристики батарей, длина и сечение труб, производительность циркуляционного насоса и многие другие параметры также определяются в результате расчета тепловых нагрузок.

Раздел «Котельная»

  • в пояснительной записке производится расчет основных требований к котельным (площадь остекления, сечение вентиляционного канала, размер дымохода, размер приточной решетки, электрическая нагрузка) с адаптацией к данному помещению котельной;
  • схема котельной позволяет видеть взаимосвязь оборудования;
  • на плане котельной – точное расположение основного оборудования и требований к помещению.
  • спецификация оборудования позволит обратиться в разные компании для составления коммерческих предложений и выбрать оптимальную стоимость котельной.

Расчет стоимости отопления Стоимость ремонта систем отопления Стоимость монтажа водоснабжения

Как рассчитать теплопотери самостоятельно?

Формула расчета теплопотерь трубопровода: Q = (2π × λ × L × (Tвн — Tнар) / ln(D / d) × k

  • π – константа (~ 3,14);
  • λ – коэффициент теплопроводности изоляции, Вт/м°С (см. таблицу ниже);
  • L – длина трубы, м;
  • Tвн – температура жидкости в трубопроводе, °С;
  • Tнар – температура окружающей среды, °С;
  • D – наружный диаметр трубопровода с теплоизоляцией, м;
  • d – внутренний диаметр трубопровода, м;
  • k – коэффициент запаса мощности (1,3).

Коэффициент теплопроводности материалов – таблица по СП

Материал Коэффициент теплопроводности, Вт/м°С
Асбестовый матрац, заполненный совелитом 0,087
Асбестовый матрац, заполненный стекловолокном 0,058
Асботкань в несколько слоев 0,13
Асбестовый шнур 0,12
Асбестовый шнур (ШАОН) 0,13
Асбопухшнур (ШАП) 0,093
Асбовермикулитовые изделия марки 250 0,081
Асбовермикулитовые изделия марки 300 0,087
Битумоперлит 0,12
Битумокерамзит 0,13
Битумовермикулит 0,13
Диатомовые изделия марки 500 0,116
Диатомовые изделия марки 600 0,14
Пенопласт ФРП-1 и резопен группы 100 0,043
Пенополиуретан 0,05
Полуцилиндры и цилиндры минераловатные марки 150 0,049
Полуцилиндры и цилиндры минераловатные марки 200 0,052
Совелитовые изделия марки 350 0,076
Совелитовые изделия марки 400 0,078
Фенольный поропласт ФЛ монолит 0,05
Шнур минераловатный марки 200 0,056
Шнур минераловатный марки 250 0,058
Шнур минераловатный марки 300 0,061

Температурные нормы обогреваемых жилых помещений

В СНиП , регламентирующем конструкционные и физические параметры различных видов отопления, указано, какая температура должна поддерживаться в помещениях для комфортабельного проживания и нахождения в нем людей, его некоторые разделы:

  1. Отопительную систему сооружений проектируют с учетом равномерного нагрева воздуха в помещениях, обеспечения взрыво- и пожаробезопасности, необходимого напора и теплостойкости магистрали, удобства визуального осмотра, проведения обслуживающих и ремонтных операций на линии.
  2. Автоматическую регулировку потока рабочей среды предусматривают при расходе постройкой тепловой энергии больше 50 кВт.
  3. Минимальный тепловой поток, поступающий от теплообменных агрегатов в кухонные и жилые помещения принимают в 10 Ватт на квадратный метр пола. При этом учитывают энергию, исходящую от электроприборов, освещения, коммуникаций и различного типа оборудования, присутствующих в комнатах людей и прочих энергетических источников.
  4. На этапе проектирования отопительных систем жилых домов предусматривают обеспечение регулирования и учет теплоэнергии здания или его отдельной секции в каждой квартире, помещениях общего пользования.
  5. Для определения расхода энергии помимо общего домового счетчика предусматривают устройство: — горизонтальной трубной разводки с установкой счетчика израсходованной тепловой энергии в каждой отдельно взятой квартире; — систем учета энергии посредством размещения расходомерных индикаторов на каждом теплообменном радиаторе в домах, где используется общая стояковая разводка для нескольких квартир; — единого теплового расходомера для всего здания или его секций с реализацией поквартирного подсчета потребляемой энергии согласно их отапливаемой площади.
  6. Максимальную поверхностную температуру полов под осевой линией теплообменных приборов в жилых постройках берут равной +35 °С.
Читайте также:  Как Правильно Написать Заявление на Перерасчет Отопления

Рис. 5 Нормы оптимального микроклимата в зоне обслуживания бытовых, для жилья, административных, общественных помещений по СНиП

Для отопления многоквартирного дома или частного жилья выбирается температура воды в системе отопления, точнее ее регулировка в теплообменных радиаторах с таким расчетом, чтобы обеспечить комфортный микроклимат для нахождения жильцов в комнатах. Санитарные требования к условиям проживания в жилых помещениях приведены в СанПиН , его нормативы допусков:

  • жилые комнаты: +18 — +24 °C;
  • кухни, туалеты и ванны совмещенными санузлами: +18 — +26 °С;
  • угловые комнаты: выше стандартных показателей для жилых комнат на 2 градуса (+20 — +26 °С);
  • кладовки: +12 – +22 °С;
  • чердаки и подвалы: +4 – +8 °C;
  • коридоры, вестибюли, лестничные проемы и площадки: +14 — +20 °С;
  • детские игровые: от +20 до +24 °C;
  • закрытые веранды и террасы: +10 — +14 °C.

Для корректного определения температуры в помещениях измерения проводят на удалении в 1 метр от внутренней отделки стен и 1,5 м от полового покрытия.

Для равномерного прогрева помещения по всей площади должна обеспечиваться кратность воздухообмена, ее главные показатели регламентированы СНиП и составляют для жилых комнат минимум 3 м3/ч на 1 м2 при естественном проветривании. В индивидуальных домах и квартирах также используются следующие нормативы теплообмена:

  • для комнат площадью 18 — 20 м2 показатель должен составлять 3 м3/ч на 1 м2;
  • при размещении кухнях площадью до 18 м2 газовых двухконфорочных и электроплит кратность воздухообмена увеличивается и составляет 60 м3/ч, соответственно с 3-мя конфорками показатель теплообмена 75 м3/ч, при 4-х горелках кратность — 90 м3/ч;
  • в ванных комнатах площадью до 25 м2 минимальную кратность воздухообмена принимают в 25 м3/ч.
  • в туалетных комнатах площадью до 18 м2 воздухообменный норматив — от 25 м3/ч.
  • в совмещенном санузле принимают кратность воздухообмена 50 м3/ч, при нахождении в нем писсуаров показатель увеличивается на 25 м3/ч.

Рис. 6 Нормы микроклимата в жилых помещениях по СанПиН

График продолжительности тепловых нагрузок

Для установления эконо­мичного режима работы теплофикационно­го оборудования, выбора наиболее оптимальных параметров теплоносителя необходимо знать длительность работы системы теплоснабжения при раз­личных режимах в течение года. Для этой цели строятся графики продолжительности тепловой нагрузки (графики Россандера).

Метод построения графика продолжи­тельности сезонной тепловой нагрузки по­казан на рис. 4. Построение ведется в че­тырех квадрантах. В левом верхнем квад­ранте построены графики зависимости от наружной температуры tH,

Читайте также:  Газовые котлы для отопления частного дома как выбрать

тепловой нагруз­ки отопленияQ, вентиляцииQB и суммар­ной сезонной нагрузки(Q + п в течение отопительного периода наружных температур tн, равных данной температуре или ниже.

В нижнем правом квадранте проведена прямая линия под углом 45° к вертикальной и горизонтальной осям, используемая для переноса значений шкалы п

График продолжительности тепловых нагрузок

из нижнего ле­вого квадранта в верхний правый квадрант. График продолжительности тепловой на­грузки 5 строится для разных наружных температурtн по точкам пересечения штри­ховых линий, определяющих тепловую на­грузку и длительность стояния нагрузок, равных или больше данной.

Площадь под кривой 5

продолжительно­сти тепловой нагрузки равна расходу тепло­ты на отопление и вентиляцию за отопительный сезон Qсгод.

Рис. 4. Построение графика продолжительности сезонной тепловой нагрузки

В том случае, когда отопительная или вентиляционная нагрузка изменяется по ча­сам суток или дням недели, например, когда в нерабочие часы промышленные предприятия переводятся на дежурное отопление или вентиляция промышленных предпри­ятий работает некруглосуточно, на график наносят три кривые расходов теплоты: одну (обычно сплошная линия) исходя из средне­го при данной наружной температуре рас­хода теплоты за неделю на отопление и вен­тиляцию; две (обычно пунктир) исходя из максимальной и минимальной нагрузок на отопление и вентиляцию при этой же на­ружной температуре tH.

Такое построение показано на рис. 5.

График продолжительности тепловых нагрузок

Рис. 5. Интегральный график суммарной нагрузки района

—Q = f(tн);б — график продолжительности тепло­вой нагрузки; 1 — среднечасовая за неделю суммарная нагрузка;2 — максимально-часовая суммарная нагруз­ка;3 — минимально-часовая суммарная нагрузка

Годовой расход теплоты на отопление можно исчислять с небольшой погрешно­стью без точного учета повторяемости тем­ператур наружного воздуха за отопитель­ный сезон, приняв средний расход теплоты на отопление за сезон равной 50 % расхода теплоты на отопление при расчетной на­ружной температуре tно.

Если известен го­довой расход теплоты на отопление, то, зная длительность отопительного сезона, легко определить средний расход теплоты. Максимальный расход теплоты на отопле­ние можно для ориентировочных расчетов принимать равным удвоенному среднему расходу.

Расчеты энергии

В первом случае перед тем, как приобрести котел того или иного вида, необходимо произвести определенный тепловой расчет, исходя из которого можно будет подобрать котел, который будет работать наиболее эффективно, и вы сможете получить бесперебойное горячее водоснабжение и хороший обогрев всего сооружения целиком.

Схема организации системы отопления двухэтажного частного дома.

Далеко не каждый котел сможет подойти, а это значит, что необходимо приобретать котел именно такой мощности, который будет работать даже при самых максимальных нагрузках, и при этом срок эксплуатации подобного оборудования не сократится

Для того чтобы добиться необходимых результатов при выборе, необходимо обращать пристальное внимание на этот аспект. Примерно то же касается и выбора оптимального оборудования для отопления помещения в целом

Правильный расчет тепловой энергии не только позволит приобрести те приборы отопления, которые прослужат долго, но и даст возможность немного сэкономить на покупке, а значит, затраты на отопление помещения тоже могут снизиться.

Что касается получения ТУ и согласования на газификацию объекта, то расчет энергии в данном случае является основополагающим фактором. Подобного рода разрешения необходимо получать тогда, когда в качестве топлива предполагается использование природного газа под котел. Чтобы получить документацию такого рода, нужно предоставить показатели годового расхода топлива и сумму мощности отопительных источников (Гкал/час).

Разумеется, что получить такую информацию можно только исходя из проведенного расчета тепловой энергии, а затем можно будет приобрести отопительный прибор, который помимо всего прочего сведет к минимуму затраты на отопление. Использование природного газа в качестве топлива под котел сегодня является одним из наиболее популярных способов на отопление помещения.

де, ч.

. (6а)

ТС — тепловая сеть

— теплосчетчик

— водосчетчик

. (7)

, (8)

, (9)

, (10)

. (11)

. (9а)

. (9б)

, (12)

, (13)

. (13а)

, (14)

, (13б)

, (15)

, (16)

, (17)

, (18)

где — средняя часовая нагрузка горячего водоснабжения рассматриваемого абонента по договору теплоснабжения (расчетный водоразбор), т/ч.

Методические рекомендации по определению средних часовых нагрузок горячего водоснабжения абонентов приведены в приложении 1.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

Фундамент из монолитной железобетонной плиты (20 см), наружные стены – бетон (25 см) со штукатуркой, крыша – перекрытия из деревянных балок, кровля – металлочерепица и минеральная вата (10 см)

Обозначим исходные параметры дома, необходимые для проведения расчетов.

Габариты здания:

  • высота этажа – 3 м;
  • малое окно фасадной и тыльной части здания 1470*1420 мм;
  • большое окно фасада 2080*1420 мм;
  • входные двери 2000*900 мм;
  • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

Пример теплового расчёта

Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей – это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола – 152 м2;
  • площадь крыши – 180 м2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
  • площадь окон – 3**+* м2;
  • площадь дверей – 2*0.9+2*2*1.4=7.4 м2.

Площадь наружных стен будет равна 51* м2.

Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7= Вт;
  • Qкрыша=180*40*0.1/ Вт;
  • Qокно=*40* Вт;
  • Qдвери=7.4*40* Вт;

А также Qстена эквивалентно *40* Сумма всех теплопотерь будет составлять 19628.4 Вт.

В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)**83.7* кВт.

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

Значит, N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*)/180=

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

Пример теплового расчёта

Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(*P*μ)/∆T=(*21000*0.9)/20=812.7 л.

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен раза в один час.

Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

  1. Расчет системы отопления частного дома: правила и примеры расчёта
  2. Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.